发表评论取消回复
相关阅读
相关 抖音算法导向问题:公众信息接收是否存在偏差?
是的,抖音算法确实可能导致公众信息接收存在偏差。 首先,抖音的推荐机制主要是基于用户的兴趣、观看历史、点赞和评论行为等数据。如果用户长期只关注某个特定领域的内容,他们就可能在
相关 NLP-信息抽取-三元组-联合抽取-“结构化预测”模式-2022:OneRel【单模块、单步解码的实体关系联合抽取方法】【直接识别三元组、更好捕获三元组间的相互依赖】【在小数据集上表现不好】
实体关系抽取算是这两年比较火热的NLP任务之一,熟悉JayJay的同学们都知道,JayJay一直比较关心关系抽取的进展。 过去的2年,关系抽取的SOTA也一直被追逐赶超、不断
相关 NLP-信息抽取-三元组-Pipeline-2021:PURE【解决SEO/EPO/SOO问题】【引入Typemarked思想,集中于一对实体对关系的语义】【存在误差传递和暴露偏差问题】
论文中的动机: 联合模型在实体抽取与关系抽取共享一个编码器会影响抽取性能,因为实体和关系抽取两个任务需要关注捕捉的信息是不同的 实体信息(例如实体边界和实体类型)
相关 NLP-信息抽取-三元组-Pipeline-2021:PRGC【解决SEO/EPO/SOO问题;计算效率较CasRel有很大提升】【仍存在误差传递和暴露偏差问题】
PRGC是针对CasRel模型和TPLinker模型存在的问题进行改进的,上面也提到了CasRel由于关系冗余使得很多操作无效,它的subject-object对齐提取机制使其
相关 NLP-信息抽取-三元组-联合抽取-TabelFilling-2022:OneRel【单模块、单步解码的实体关系联合抽取方法】【直接识别三元组、更好捕获三元组间的相互依赖】【只有N个矩阵】
实体关系抽取算是这两年比较火热的NLP任务之一,熟悉JayJay的同学们都知道,JayJay一直比较关心关系抽取的进展。 过去的2年,关系抽取的SOTA也一直被追逐赶超、不断
相关 NLP-信息抽取-三元组-联合抽取-TabelFilling-2021:GRTE【解决SEO/EPO/SOO问题】【挖掘全局特征】【填表策略减少了填表数目,减少了冗余的信息】【缺点:解码推断效率低】
《原始论文: [A Novel Global Feature-Oriented Relational Triple Extraction Model based on Tabl
相关 NLP-实体&关系联合抽取-2021:UniRE
(Zhong and Chen,ACL2020) 使用pipeline方法为实体检测和关系分类设置了两个独立的标签空间,并取得了SOTA。由于pipeline方法不能共享实体抽
相关 NLP-实体&关系联合抽取-2021:GPLinker
基础思路 关系抽取乍看之下是三元组 ( s , p , o ) (s,p,o) (s,p,o)(即subject, predicate, object)的抽取,但落到具
相关 NLP-信息抽取-三元组-联合抽取-TabelFilling-2020:TPLinker【解决SEO/EPO/SOO/曝露偏差/误差传播问题】【缺点:标注复杂度高,实体和关系没有进行很深的交互和关联】
信息抽取两大难题: 一、暴露偏差 二、实体重叠、关系重叠 联合抽取的结构化预测双头标注才能同时解决上述两个问题,百度的联合抽取的结构化预测但是序列标注,能解决暴露偏
相关 NLP(二十六)限定领域的三元组抽取的一次尝试
本文将会介绍笔者在2019语言与智能技术竞赛的三元组抽取比赛方面的一次尝试。由于该比赛早已结束,笔者当时也没有参加这个比赛,因此没有测评成绩,我们也只能拿到训练集和验证集。
还没有评论,来说两句吧...