发表评论取消回复
相关阅读
相关 熵、联合熵、相对熵、交叉熵、JS散度、互信息、条件熵
目录 一、熵 二、联合熵 三、相对熵(KL散度) 四、交叉熵 五、JS散度 六、互信息 七、条件熵 八、总结 --------------------
相关 信息熵、相对熵(KL散度)和交叉熵
[https://blog.csdn.net/weixin\_37688445/article/details/104113465][https_blog.csdn.net_w
相关 深入理解机器学习中的信息熵、KL散度、交叉熵
通用的说,熵(Entropy)被用于描述一个系统中的不确定性(the uncertainty of a system)。在不同领域熵有不同的解释,比如热力学的定义和信息论也不大
相关 机器学习 | 算法模型 —— 算法训练:损失函数之交叉熵(熵/相对熵/KL散度/sigmoid/softmax)
目录 1.信息论 1.1.信息量 1.2.熵 1.3.KL散度(相对熵) 1.4.交叉熵 2.交叉熵的类型 2.1.多分类交叉熵 2.2.二分类交叉熵 3
相关 相对熵(KL散度)
今天开始来讲相对熵,我们知道信息熵反应了一个系统的有序化程度,一个系统越是有序,那么它的信息熵就越低,反 之就越高。下面是熵的定义 如果一个随机变量![0720063
相关 KL散度(Kullback-Leibler_divergence)(相对熵)
转载自[http://blog.csdn.net/chdhust/article/details/8506260][http_blog.csdn.net_chdhust_art
相关 信息熵、相对熵、交叉熵公式及tensorflow代码
最近在学习卷积神经网络,其中遇到了信息熵和交叉熵,对此理解的一知半解,现记录一下信息熵、相对熵、交叉熵公式及tensorflow代码,供以后参考。 假设概率分布中,真实分布:
相关 数学之美:信息的度量和作用 KL散度 自信息 熵 相对熵 KL divergence entropy
![这里写图片描述][70] ![这里写图片描述][70 1] 当上述公式中概率相等时会推出,H刚好等于5比特。 自信息: 一条信息的信息量与该信息的不确定性有
还没有评论,来说两句吧...