发表评论取消回复
相关阅读
相关 SVM之KKT条件理解
在SVM中,我们的超平面参数最终只与间隔边界上的向量(样本)有关,故称为支持向量机。 求解最优超平面,即求最大化间隔,或最小化间隔的倒数:||w||2/2,约束条件为yi(w
相关 核方法概述----正定核以及核技巧(Gram矩阵推导正定核)
在[再谈SVM(hard-margin和soft-margin详细推导、KKT条件、核技巧)][SVM_hard-margin_soft-margin_KKT]中我们大致谈
相关 深入理解SVM---从头到尾详细推导(软硬间隔、KKT条件、核技巧)
前言:大概一个月前,通过李宏毅的机器学习系列视频,我自学了一点SVM,整理在:[机器学习之SVM(Hinge Loss+Kernel Trick)原理推导与解析][SVM_
相关 手推支持向量机03-硬间隔SVM-模型求解(对偶问题之KKT条件)
目录 1.写在前面 2.KTT条件 3.求最终的w\,b\和最终的决策函数 -------------------- 1.写在前面 上面我们讲到
相关 硬间隔支持向量机推导【纯公式……】
支持向量机很早很早就被提出来了,而且在最近几年里一直在被更新和改进,但是追本溯源,我们还是得回到那个古老的年代,去看看支持向量机原本的模样。原本是用 cTex 写的啦,后来复制
相关 SVM(二):KKT条件最直白的解释
目录 约束有否有效的问题 求解 KKT条件 约束有否有效的问题 在KKT条件的诸多大佬的解释中,都有一个关于约束是否有效的讨论,然而大多数
相关 万字硬核|深入理解Linux网络包接收过程
因为要对百万、千万、甚至是过亿的用户提供各种网络服务,所以在一线互联网企业里面试和晋升后端开发同学的其中一个重点要求就是要能支撑高并发,要理解性能开销,会进行性能优化。而很多时
相关 详解SVM支持向量机算法(三:软间隔SVM和非线性SVM)
目录 背景 线性支持向量机(软间隔SVM) 硬间隔的问题 引入松弛变量 目标函数的优化 生成拉格朗日函数 软间隔原始问题 软间隔对偶问题 求解思路:
相关 SVM理解之核函数
核函数是什么 在使用SVM分类器处理非线性问题时,核函数是绕不过的坎,其实关于核函数,首先需要记住这两句话: 1. 核函数可以使向量直接在原来的低维空间中进行内积计算
相关 SVM核函数与软间隔
[SVM核函数与软间隔][SVM] 核函数 在上文中我们已经了解到使用SVM处理线性可分的数据,而对于非线性数据需要引入核函数的概念![190
还没有评论,来说两句吧...