发表评论取消回复
相关阅读
相关 人工智能-损失函数-优化算法:普通梯度下降算法【BGD(批量梯度下降法)、SGD(随机梯度下降)、MBGD(小批量梯度下降法)】
人工智能-机器学习-损失函数-优化方法:普通梯度下降算法 一、损失函数 二、梯度下降法求解损失函数极小值 1、损失函数 J ( θ 0 , θ 1
相关 梯度下降:全梯度下降算法(FG)、随机梯度下降算法(SG)、小批量梯度下降算法(mini-batch)、随机平均梯度下降算法(SAG)。梯度下降法算法比较和进一步优化。
![20191009191333910.png][][日萌社][Link 1] [人工智能AI:Keras PyTorch MXNet TensorFlow Paddle
相关 数据挖掘——梯度下降算法解决一元函数
一、问题描述 考虑一元目标函数![2020052107501030.png][]。 (1)写出目标函数F的![2020052107501026.png][]。 (2)
相关 数据挖掘——梯度下降算法解决糖尿病问题
一、问题描述 实现线性回归的梯度下降算法,解决糖尿病预测问题,输出mse和![20200521075631151.png][]的值 二、实验目的 熟练的掌握线性回
相关 【Pytorch】梯度下降算法
梯度下降算法 1. 梯度 2. 梯度下降与梯度上升 3. 梯度下降法算法详解 3.1 梯度下降算法的具象解释 3.2 需了解的
相关 python学习:一元线性回归-梯度下降
数据 32.502345269453031,31.70700584656992 53.426804033275019,68.77759598163891
相关 梯度下降 算法
![20191009191333910.png][][日萌社][Link 1] [人工智能AI:Keras PyTorch MXNet TensorFlow Paddle
相关 多元梯度下降法
![20191009191333910.png][][日萌社][Link 1] [人工智能AI:Keras PyTorch MXNet TensorFlow Paddle
还没有评论,来说两句吧...