发表评论取消回复
相关阅读
相关 2019CVPR细粒度论文笔记《Destruction and Construction Learning for Fine-grained Image Recognition》
CVPR2019的一篇细粒度分类,京东AI研究院: Chen Y, Bai Y, Zhang W, Mei T. Destruction and Constru
相关 ResNet-Deep Residual Learning for Image Recognition翻译
![1598479-20190917155126007-340672436.png][] 转载于:https://www.cnblogs.com/yunshangyue
相关 ResNet:Deep Residual Learning for Image Recognition
ResNet:Deep Residual Learning for Image Recognition 文章目录 ResNet:Dee
相关 (十):ViT--TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE
文献阅读(十):AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE
相关 论文阅读|ResNet:Deep Residual Learning for Image Recognition
背景: VGG到GoogleNet等网络的演变证明了深度对于神经网络来说是至关重要的,ImageNet数据集挑战上的神经网络的深度也从16演变到了30+,深度的提升给网络带
相关 OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networ
相关 Image Recognition and Face Detection
Image recognition and face detection has been around for some years. However, usage and
相关 Selective Sparse Sampling for Fine-grained Image Recognition
Selective Sparse Sampling for Fine-grained Image Recognition ![image-2021090222474212
相关 Mask-CNN: Localizing Parts and Selecting Descriptors for Fine-Grained Image Recognition
Mask-CNN: Localizing Parts and Selecting Descriptors for Fine-Grained Image Recognition
相关 选择性搜索Selective Search for Object Recognition
本文地址:[https://link.springer.com/article/10.1007/s11263-013-0620-5][https_link.springer.c
还没有评论,来说两句吧...