发表评论取消回复
相关阅读
相关 Question Answering over Freebase via Attentive RNN with Similarity Matrix based CNN
Question Answering over Freebase via Attentive RNN with Similarity Matrix based CNN
相关 Question Answering with Subgraph Embedding
Question Answering with Subgraph Embedding 总结 文章提出一个将问题、候选答案映射到低维稠密向量,然后计算其关联程度评分,
相关 【论文阅读】Multi-hop Question Generation with Graph Convolutional Network
Multi-hop Question Generation with Graph Convolutional Network > [论文:https://arxiv.or
相关 【论文阅读】Multi-hop Question Answering via Reasoning Chains
Multi-hop Question Answering via Reasoning Chains > [论文:2019-Multi-hop Question Answe
相关 【论文阅读】Hierarchical Graph Network for Multi-hop Question Answering
Hierarchical Graph Network for Multi-hop Question Answering > [论文:https://arxiv.org/a
相关 【论文阅读】Answering Complex Open-domain Questions Through Iterative Query Generation
Answering Complex Open-domain Questions Through Iterative Query Generation > 论文:Answe
相关 【论文阅读】Semantic Graphs for Generating Deep Questions
Semantic Graphs for Generating Deep Questions > [论文:https://arxiv.org/abs/2004.12704]
相关 Constraint-Based Question Answering with Knowledge Graph 论文笔记
摘要: KBQA中大部分的问题都比较简单,只是有单一的关系。本文提出了一个新的数据集,旨在检测方法在多约束问题上的表现,同时提出了一个新的方法来解决多约束的问题。 1
相关 Character-Level Question Answering with Attention 论文笔记
1. Introduction 单关系事实问句转换为KB查询语句有三个难点,作者针对这三个难点一一给出了解决方案。 首先,同一个问题有多种表达,作者是用来LSTM来编码
相关 Semantic Parsing via Staged Query Graph Generation: Question Answering with Knowledge Base 论文笔记
部分内容来自[https://zhuanlan.zhihu.com/p/25942766][https_zhuanlan.zhihu.com_p_25942766] 摘要
还没有评论,来说两句吧...